Biasadd

将偏置向量 input_bias 加到输入张量 input_x 上。这是一个特殊的广播加法,其中偏置向量会沿着非通道维度进行广播。

\[\text{Output} = \text{Input} + \text{Bias}\]

对于NCHW格式,计算为 \(\text{Output}(n, c, h, w) = \text{Input}(n, c, h, w) + \text{Bias}(c)\)。 对于NHWC格式,计算为 \(\text{Output}(n, h, w, c) = \text{Input}(n, h, w, c) + \text{Bias}(c)\)

输入:
  • input_x - 输入张量的数据地址。

  • input_bias - 1D偏置张量的数据地址。其长度必须等于输入张量的通道维度。

  • dims - 输入张量的维度信息数组。

  • shape_size - 输入张量的维度数。

  • data_format - 数据布局格式,支持 “NCHW” 和 “NHWC”。

  • length - 输入张量 input_x 的总元素数量。

  • core_mask - 核掩码。

输出:
  • output - 输出张量的数据地址,其维度与`input_x`相同。

支持平台:

FT78NE MT7004

备注

  • FT78NE 支持int8, int16, int32, fp32, fp64, cplx64, cplx128

  • MT7004 支持fp16, fp32, int16, int32, cplx64

共享存储版本:

void i8_biasadd_s(int8_t *input_x, int8_t *input_bias, int8_t *output, int *dims, int shape_size, char *data_format, int length, int core_mask)
void i16_biasadd_s(int16_t *input_x, int16_t *input_bias, int16_t *output, int *dims, int shape_size, char *data_format, int length, int core_mask)
void i32_biasadd_s(int32_t *input_x, int32_t *input_bias, int32_t *output, int *dims, int shape_size, char *data_format, int length, int core_mask)
void fp_biasadd_s(float *input_x, float *input_bias, float *output, int *dims, int shape_size, char *data_format, int length, int core_mask)
void hp_biasadd_s(half *input_x, half *input_bias, half *output, int *dims, int shape_size, char *data_format, int length, int core_mask)
void dp_biasadd_s(double *input_x, double *input_bias, double *output, int *dims, int shape_size, char *data_format, int length, int core_mask)
void c64_biasadd_s(float *input_x, float *input_bias, float *output, int *dims, int shape_size, char *data_format, int length, int core_mask)
void c128_biasadd_s(double *input_x, double *input_bias, double *output, int *dims, int shape_size, char *data_format, int length, int core_mask)

C调用示例:

 1//FT78NE示例
 2#include <stdio.h>
 3#include <biasadd.h>
 4int main(int argc, char* argv[]) {
 5    float *input_x = (float *)0xA0000000;    // input_x 在DDR空间
 6    float *input_bias = (float *)0xB0000000; // input_bias
 7    float *output = (float *)0xC0000000;     // output
 8
 9    // NHWC format
10    int dims[] = {2, 224, 224, 3}; // N, H, W, C
11    int shape_size = 4;
12    int length = 2 * 224 * 224 * 3;
13    const char* data_format = "NHWC";
14    int core_mask = 0xff;
15
16    // The length of input_bias should be dims, which is 3.
17    fp_biasadd_s(input_x, input_bias, output, dims, shape_size, data_format, length, core_mask);
18    return 0;
19}

私有存储版本:

void i8_biasadd_p(int8_t *input_x, int8_t *input_bias, int8_t *output, int *dims, int shape_size, char *data_format, int length)
void i16_biasadd_p(int16_t *input_x, int16_t *input_bias, int16_t *output, int *dims, int shape_size, char *data_format, int length)
void i32_biasadd_p(int32_t *input_x, int32_t *input_bias, int32_t *output, int *dims, int shape_size, char *data_format, int length)
void fp_biasadd_p(float *input_x, float *input_bias, float *output, int *dims, int shape_size, char *data_format, int length)
void hp_biasadd_p(half *input_x, half *input_bias, half *output, int *dims, int shape_size, char *data_format, int length)
void dp_biasadd_p(double *input_x, double *input_bias, double *output, int *dims, int shape_size, char *data_format, int length)
void c64_biasadd_p(float *input_x, float *input_bias, float *output, int *dims, int shape_size, char *data_format, int length)
void c128_biasadd_p(double *input_x, double *input_bias, double *output, int *dims, int shape_size, char *data_format, int length)

C调用示例:

 1//FT78NE示例
 2#include <stdio.h>
 3#include <biasadd.h>
 4int main(int argc, char* argv[]) {
 5    float *input_x = (float *)0x10000000;    // input_x 在L2空间
 6    float *input_bias = (float *)0x11000000; // input_bias
 7    float *output = (float *)0x12000000;     // output
 8
 9    // NCHW format
10    int dims[] = {2, 3, 224, 224}; // N, C, H, W
11    int shape_size = 4;
12    int length = 2 * 3 * 224 * 224;
13    const char* data_format = "NCHW";
14
15    // The length of input_bias should be dims, which is 3.
16    fp_biasadd_p(input_x, input_bias, output, dims, shape_size, data_format, length);
17    return 0;
18}